MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


 / = [          ] ,     [  ]    .



Na mecânica quântica, a Representação de Dirac ou Representação de Interação é uma intermediação entre a Representação de Schrödinger e a Representação de Heisenberg. Considerando que nas outras duas representações ou o vetor do estado quântico ou o operador possuem dependência com o tempo, na Representação de Dirac ambas possuem parte da dependência do tempo dos observáveis.

Equações que incluem operadores agindo em tempos distintos, que são comportadas na Representação de Dirac, não necessariamente serão comportados nas representações de Schrödinger e Heisenberg. Isto é porque transformações unitárias do tempo se relaciona com operadores de uma representação com o operador análogo da outra representação.

Definição

Operadores e vetores dos estados quânticos na Representação de Dirac são relacionados pela mudança de base para aqueles operadores e vetores na Representação de Schrödinger.[1]

Para alternar na Representação de Dirac, nós dividimos o hamiltoniano da Representação de Schrödinger em duas partes, . Qualquer escolha das partes nos dará uma Representação de Dirac válida, mas para nos ser útil na simplificação do problema, as partes serão escolhidas de forma que  será facilmente resolvido e  conterá as partes mais difíceis de analisar deste sistema.

Se o hamiltoniano for dependente do tempo (por exemplo, se o sistema quântico interagir com um campo elétrico aplicado externo que varia com o tempo), normalmente nos será vantajoso incluir explicitamente os termos dependentes do tempo com , deixando o  independente do tempo. Nós iremos assumir que este será o caso. (se existir um contexto em que isto faça sentido ter um  dependente do tempo, então deve-se trocar  pelo operador de evolução).

Vetor do estado quântico

O vetor do estado quântico na Representação de Dirac é definido como[2]

 
 / = [          ] ,     [  ]    .

Onde  é o mesmo vetor da Representação de Schrödinger.

Operadores

Um operador na Representação de Dirac é definido como

Perceba que  não será dependente de t e pode ser reescrito como .

Operador hamiltoniano

Para o operador  a Representação de Dirac e Schrödinger são idênticas

 
 / = [          ] ,     [  ]    .

Isto pode ser comprovador usando o facto que os operadores comutáveis com funções diferenciáveis. Este operador em particular também pode ser escrito da forma  sem ambiguidade.

Para a perturbação hamiltoniana , teremos

 / = [          ] ,     [  ]    .

onde a perturbação hamiltoniana da Representação de Dirac se torna um hamiltoniano dependente do tempo (a não ser que ).

É possível de se obter a Representação de Dirac para um hamiltoniano dependente do tempo , mas os exponencias precisam ser substituídos pelo propagador unitário devido para  ou mais explícito com uma integral exponencial ordenada pelo tempo.

Matriz densidade

matriz densidade pode se demonstrada transformando a Representação de Dirac da mesma forma como qualquer outro operador. Em particular, deixe  e  ser a matriz de densidade na Representação de Dirac e na Representação de Schrödinger, respectivamente. Se existe possibilidade de  ser no estado físico , então

 / = [          ] ,     [  ]    .Equações da evolução temporal

Estados da evolução temporal

Transformando a Equação de Schrödinger numa Representação de Dirac teremos:

 / = [          ] ,     [  ]    .

Esta equação se refere à equação Schwinger-Tomonaga.

Operadores da evolução temporal

Se o operador  é independente do tempo então a evolução temporal correspondente para  é dada por

 
 / = [          ] ,     [  ]    .

Na Representação de Dirac os operadores evoluem no tempo como os operadores da Representação de Heisenberg com o hamiltoniano .

Evolução temporal da matriz densidade

Transformando a equação de Schwinger-Tomonaga na linguagem da matriz densidade teremos

 
 / = [          ] ,     [  ]    .

Usos da Representação de Dirac

O propósito da Representação de Dirac é nos desviar de toda dependência do tempo devido o H0 dos operadores, deixando apenas H1, I afetando a dependência do tempo dos vetores do estado quântico.

A Representação de Dirac é conveniente quando considerado o efeito de uma pequena interação, H1, S, sendo somado ao hamiltoniano de um sistema solucionado, H0, S. Pela troca na Representação de Dirac, nós podemos usar a teoria perturbacional dependente do tempo para encontrar o efeito de H1, I.







Na mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.

O operador de evolução temporal

Definição

O operador de evolução temporal U(t,t0) é definido como:

 / = [          ] ,     [  ]    .

Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:

 / = [          ] ,     [  ]    .

Propriedades

Primeira propriedade

A operador da evolução temporal deve ser unitário. Isto é necessário porque nós precisamos que a norma do estado "ket" não mude com o tempo. Isto é,

 / = [          ] ,     [  ]    .

Em consequência disto,

 
 / = [          ] ,     [  ]    .

Segunda propriedade

Distintamente U(t0,t0) = I, a função identidade. Como:

 
 / = [          ] ,     [  ]    .

Terceira propriedade

A evolução temporal de t0 para t pode ser vista como a evolução temporal de t0 para um tempo t1 indeterminado e de t1 para o tempo final t. Então conclui-se:

 / = [          ] ,     [  ]    .

Equação diferencial para o operador da evolução temporal

Se dermos, por convenção, o índice t0 no operador da evolução temporal de forma que t0 = 0 e escrevermos isto com U(t). A Equação de Schrödinger pode ser re-escrita da seguinte forma:

 / = [          ] ,     [  ]    .

Onde H é o Hamiltoniano para o sistema. Como  é uma constante de ket (o estado ket é da forma t = 0), nós vemos que o operador da evolução temporal obedece a Equação de Schrödinger:

 
 / = [          ] ,     [  ]    .

Se o hamiltoniano independe do tempo, a solução da equação acima será:

 / = [          ] ,     [  ]    .

Onde nós também usamos o facto que t = 0U(t) precisa reduzir para a função identidade. Assim obteremos:

 / = [          ] ,     [  ]    .

Perceba que  é um ket arbitrário. Apesar de que, se o ket inicial é um valor próprio do hamiltoniano, com o valor próprio E, nós temos:

 / = [          ] ,     [  ]    .

Assim, vemos que os valores próprios do hamiltoniano são estados estacionários, eles apenas escolhem um fator de fase global já que eles evoluem com o tempo. Se o hamiltoniano é dependente do tempo, mas os hamiltonianos de diferentes tempo comutam, então o operador da evolução temporal pode ser escrito da forma:

 
 / = [          ] ,     [  ]    .

Uma alternativa para a Representação de Schrödinger é trocar para uma rotação de referências de quadros, que seja rotacionada pelo propagador do movimento. Desde que a rotação ondulatória seja agora assumida pelo próprio referencial, uma função de estados não perturbados surge para ser verdadeiramente estáticos.

Comments

Popular posts from this blog